Устройство шпинделя токарного станка по металлу

Устройство шпинделя токарного станка по металлу

Шпиндель — одна из важнейших частей токарного станка. Не будет преувеличением сказать, что без него станок — лишь груда металла, ведь практически все части, которые используются в токарном станке, предназначены для поддержания работы шпинделя.

Поэтому в этой статье будет рассказано о том, зачем он нужен, какие к нему предъявляются требования и ещё многое другое.

Информация о шпинделе

В этом разделе сделана попытка объяснить, что такое шпиндель в задвижке. Так именуется элемент резьбовой пары (состав, гайка/шпиндель).

Рис. 3 Производство шпинделей

Придав любому из данных элементов вращательное движение, добиваются вертикального двухстороннего перемещения затвора. Пара обеспечивает осуществление управления движением затвора, позволяя перемещать его перпендикулярно к плоскости движения среды по трубопроводу, с использованием электропривода либо путём вращения вентиля (вручную).

Гидравлический или пневматический привод позволяет перемещать шток запорного элемента только горизонтально.

Одна сторона шпинделя соединяется с затвором, находящимся в корпусе, вторая выходит за пределы корпуса через отверстие в крышке, закрытое сальником, и используется для соединения с используемыми элементами управления.

Как шпиндель соединяют с тарелкодержателем

Механизм соединения шпиндель-затвор предусматривает, что в результате последний центрируется, может воспринимать перестановочные усилия и распределять их по всей поверхности уплотнений (вариант, уплотнительных колец).

Соединительный узел, у разных моделей задвижек, имеет следующее конструктивное исполнение:

  • простейший вариант, предусматривающий штифтовое соединение. Имеются эксплуатационные ограничения на размер штифта. Последний должен иметь диаметр, не превышающий 0,2D самого шпинделя.

В ходе подбора необходимого решения штифт подвергают проверке на срез под действием внешних расчётных нагрузок (по сечению).

  • Если планируется эксплуатация детали в средах, которые движутся по трубопроводу под значительным давлением, применяется иной вариант.

Изготавливается головка шпинделя на стороне, предусматривающей соединение с запорным механизмом. Ей, в проекции, придаётся форма прямоугольника (вариант, квадрата). Это исключает вероятность проворота. Ту же задачу решает придание входному пазу клина формы литеры «Т».

Необходимые размеры выступов определяются конструктивно, после чего проводится прочностной расчёт по ряду позиций, определяющий стойкость заплечиков под действием различных усилий: сминающих, срезающих, изгибающих).

На втором конце шпинделя изготавливается борт конусной формы. Сюда устанавливается верхнее уплотнение, располагающееся в крышке. Подобное решение позволяет решить вопрос разделения перемещаемых сред и сальника.

Самодельный ЧПУ станок

Разделы сайта

  • Самодельный ЧПУ станок
  • 3D принтер
  • Чертежи 3D принтеров
  • Чертежи ЧПУ станков
  • 3D модели
  • Механика
  • Электроника
  • Книги по ЧПУ
  • Софт для ЧПУ станка
  • Обзоры
  • Видео
  • Лазерные граверы

Интересное предложение

Лучшее

  • Домашний 3D принтер
  • Простой контроллер для ЧПУ станка
  • Самодельный ЧПУ станок моделиста
  • Чертеж самодельного ЧПУ станка
  • Самодельный ЧПУ станок из МДФ

Статистика

Обычно в качестве шпинделя для самодельного ЧПУ станка сделанного своими руками используется Дременль или его китайские аналоги.

Однако, такие фрезеры быстро приходят в негодность, так как обычно в них упорный подшипник только один и они не предназначены для больших и продолжительных боковых нагрузок. А для ЧПУ фрезера такие нагрузки — это обычное явление, да что там, фактически вся фрезеровка идет с помощью боковых нагрузок.

Покупные шпиндели для фрезера используют коллекторные двигатели. Однако, коллекторники хорошо работают только на высоких оборотах, при этом они имеют низкую мощность на малых оборотах.

Все это можно изменить установив бесколлекторный двигатель!

На фотографии выше показано как выглядит самодельный фрезерный станок с чпу собранный своими руками, за основу взят бюджетный станок чпу для моделиста, смотрите статью, там есть чертежи ЧПУ станка и рекомендации по сборке.

Итак, для изготовления самодельного шпинделя для ЧПУ станка понадобится:

Впрочем, сервотестер можно использовать и самый дешевый — такой , его задача задавать скорость вращения мотора, так что использование определяется только эстетическим вкусом, да удобством крепления сервотестера к ЧПУ станку.

На ЧПУ станке все это выглядит подобным образом.

Как видите — нагрузка не передается на вал двигателя, вы можете сколь угодно долго гонять фрезер, но двигатель останется цел.

Впрочем, длинный вал позволяет использовать и крепление фрезы прямо на вал двигателя с помощью цангового зажима. На вал двигателя устанавливается два подшипника, крепятся с помощью держателя на ось Z, сам мотор так же имеет 2 встроенных подшипника качения и отверстия крепления. Такая конструкция легко будет противостоять боковым нагрузкам возникающим при фрезеровке заготовки.

Шпиндель получается очень мощный, 2000 Ватт! Легко грызет фанеру 8-ку в два захода на подаче 800, клеенный кевлар с толщиной до 8 мм режет кукурузной фрезой 1.5 мм с подачей 200, при большей подаче ломается фреза. Легко справляется с алюминием и акриловыми заготовками.

Я видел как такой станок изготавливает деревянную посуду из березы, сувенир конечно, не фирменная Risoli, но тарелки для украшения стен или серванта (после раскраски и лакирования) получаются просто загляденье!

Стоит добавить то, что указанный контроллер имеет встроенный режим удержания оборотов вне зависимости от нагрузки, это очень полезно при чистовой обработке.

В результате такой модификации вы получаете модернизацию самодельного ЧПУ станка по низкой цене. Скорость вращения можно регулировать с помощью сервотестера, обороты двигателя удерживаются контроллером автоматически. Качество изготовления улучается на порядок.

Стоимость компонентов для модификации самодельного ЧПУ станка укладывается в 3.5 тысячи рублей. Такая цена сравнима с новым дремелем, но он никоим образом не справится с 8ми мм фанерой, даже на подаче в 100!

Кстати, сейчас появился фабричны вариант подобного шпинделя!

Посмотреть характеристики и купить шпиндель для ЧПУ станка можно в статье Промежуточный шпиндель для ЧПУ станка.

Факультет Машиностроительный

Дипломный проект

Технологический процесс изготовления Шпинделя токарного станка

Научно-технический прогресс в машиностроение в значительной степени определяет развитие и совершенствование всех остальных отраслей. Важнейшими условиями ускорения научно-технического процесса являются рост производительности труда, повышение конкурентоспособности и улучшению качества.

Совершенствование технологических методов изготовления машин имеет при этом первостепенное значение. Качество машины, надежность, долговечность и экономичность в эксплуатации зависят не только от совершенства ее конструкции, но и от технологии производства. Применение прогрессивных высокопроизводительных методов обработки, обеспечивающих высокую точность и качество поверхностей деталей машины, методов упрочнения рабочих поверхностей, повышающих ресурс работы деталей и машины в целом — все это направлено на решение главных задач: повышения эффективности производства, конкурентоспособности и качества продукции.

Целью дипломного проекта является: разработка технологического процесса обработки детали “Шпиндель” в условиях среднесерийного производства.

1.АНАЛИЗ СОСТОЯНИЯ ВОПРОСА

1.1 Анализ служебного назначения детали

Деталь – шпиндель входит в состав шпиндельного узла токарного станка Афток 10Д.

Основное служебное назначение шпинделя токарного станка Афток 10Д – сообщать обрабатываемой заготовке вращательное движение с определенной угловой скоростью или крутящим моментом.

На рисунке 1.1 представлен фрагмент шпиндельного узла токарного станка. На шпиндель 1 напрессованы подшипники качения 2, которые в свою очередь, запрессованы в переднюю бабку 3. Натяг подшипников осуществляется стопорными гайками 4 и 5. С помощью шпонки 6 и стопорной гайки 7 на конце шпинделя 1 устанавливается шкив 8.

Читайте также  Как поставить диск на триммер

В процессе работы со шкива 8 на шпиндель 1 ,через шпонку 6, передается вращательное движение, которое получает заготовка, закрепляемая в патроне. Патрон устанавливается на шпиндель спереди, базируясь по наружному конусу.

Шпиндельный узел токарного станка Афток 10Д

Рис. 1.1.

Шпиндель изготовляется из легированной конструкционной стали 12ХН3А ГОСТ 4543-71. Область применения стали 12ХН3А: сильно нагружаемые детали с высокой поверхностной твердостью, износоустойчивостью и вязкой сердцевиной, работающие при больших скоростях и ударных нагрузках – шпиндели, валы в подшипниках качения, шестерни сложной конфигурации и т.д.

Химический состав и механические свойства стали 12ХН3А представлены в табл. 1.1.

О достоинствах шпинделей

Самодельная конструкция предполагает применение станка с наклонным шпинделем.

  1. Оснащение станка недорогостоящими зажимными устройствами.
  2. Схемы изготовления несложно найти в интернет – ресурсах.
  3. Простота конструкторского решения.
  4. Дополнительное оснащение любыми элементами соответствующих параметров.

Если нет уверенности, что выполненный своими руками шпиндель по металлу для ЧПУ или по дереву не будет работать эффективно, то чтобы избежать риска, можно приобрести изделие заводского производства.

Они также обладают рядом преимуществ:

  • высокая производительность, КПД достигает 95%;
  • надежность конструкции, то есть может функционировать при больших нагрузках и выполнять обработку материалов из камня, металла или дерева;
  • бронзовая головка обладает большим ресурсом работы;
  • период эксплуатации продолжительный, исключающий ремонт.

Выбор шпинделя осуществляется в соответствии с техническими характеристиками станка.

Как подобрать шпиндель под конкретные задачи

Основные критерии выбора при проведении модернизации станка – требования к мощности шпинделя и диапазону скоростей вращения. Причем рассматривать эти требования нужно в комплексе. Численные характеристики первого показателя определяются обрабатываемыми на станке материалами и развиваемым им усилием резания.

Для фрезерования металла фрезами диаметром свыше 4 мм нужен шпиндель мощностью выше 2 кВт. Но есть один нюанс. Если обеспечиваемый приводами момент и прочность рамы станка и портала не дают применять силовое фрезерование (большая глубина резания, средние обороты, малые подачи), то используется скоростное фрезерование (ускоренные проходы с малым заглублением инструмента в материал), в этом случае мощность не так важна.

Выбор скорости вращения шпинделя зависит от материала, который обрабатывается на станке, и типа используемого инструмента. При работе по металлу твердосплавная фреза диаметром 4 мм отработает на 10000 оборотов в минуту, но быстрорежущая таких режимов не выдержит даже при фрезеровании с малой глубиной резания и сгорит.

Точка зрения «для обработки дерева нужны высокие обороты» не всегда оправдана – при малых подачах нарушается нормальное стружкообразование и образуется мелкодисперсная пыль, попадание которой между материалом и фрезой приводит к повышению температуры в зоне резания.

В среднем для фрезерования хватает 8000-12000 оборотов в минуту, для гравировки – минимум 20000.

Профессиональные советы, которые помогут вам определиться какой шпиндель выбрать для станка с ЧПУ.

Шпиндель — основной рабочий агрегат фрезерного станка с ЧПУ.

Подбирается в зависимости от обрабатываемых материалов и режимов обработки.

Первое, с чем надо определиться, будет ли шпиндель со встроенным электродвигателем, или будет приводиться в движение через ременную или зубчатую передачу.

Выбор типа шпинделя

  • развивают высокие скорости вращения (обычно 18-24 000 об/мин, некоторые модели до 120 000 об/мин)
  • хорошо режут обычно на высокой скорости, теряя момент с оборотами
  • используют относительно небольшие скоростные шарикоподшипники, из-за чего ограничены по нагрузкам
  • не имеют обратной связи по положению и скорости, из-за чего невозможно выполнять некоторые операции, например, качественно и производительно нарезать резьбу.
  • используют обычно цанговые зажимы типа ER или небольшие инструментальные конусы, часто типа ISO или BT

Выбор вида охлаждения электрошпинделя

Электрошпиндели по типу охлаждения бывают 2 видов — жидкостного и воздушного. Шпиндели водяного охлажденияотличаются следующим:

  • Звук. Они существенно тише воздушных. Это преимущество нивелируется звуком от фрезы, который намного громче работающей крыльчатки
  • Контур охлаждения. Это означает подключение помпы, трубки охлаждения, емкость с тосолом, и т. п. В идеале также контролировать силу потока и его температуру.
  • Возможность работы на низких оборотах. Воздухоохлаждаемые же шпиндели быстро начинают перегреваться — поскольку крыльчатка устанавливается на вал шпинделя, с падением оборотов растет ток и одновременно падает воздушный поток.

Отличительные особенности шпинделей воздушного охлаждения:

  • Звук. Крыльчатка воздушников весьма сильно воет
  • Разлет стружки. Крыльчатка дует практически прямо в зону реза, что вызывает разлет стружки повсюду.
  • Прочистка рубашки. Рубашка охлаждения может забиваться продуктами резания. Периодически её необходимо прочищать.
  • Чувствительность к перегреву. Воздушное охлаждение менее эффективно, чем жидкостное, в связи с чем надо тщательно следить за температурой шпинделя. Обычно на них есть простой термодатчик (термопара), который можно завести в ЧПУ контроллер.
  • Обороты ограничены снизу. На воздушниках нельзя работать на скоростях ниже определенного предела. Если в случае с жидкостными максимум что произойдет — момент упадет до минимума, фрезу заклинит и она сломается, то воздушник из-за перегрева может просто сгореть.

При прочих равных воздушные шпиндели хорошо себя показывают при обработке мягких материалов, там, где обработка идет на больших скоростях — МДФ, массива, пластиков и т.п.

Водяные шпиндели с равным успехом показывают себя при обработке как дерева/пластиков, так и мягких металлов (алюминий, медь и их сплавы).

Если вы определились какой шпиндель выбрать, и это воздушное охлаждение, далее вам надо определиться с брендом, после чего уже не будет большой проблемы выбрать конкретную модель.

Со шпинделями водяного охлаждения немного сложнее, т.к. разброс в их типах, сериях и т.п. достаточно велик. Обычно если в описании написано «для деревообработки и рекламных работ» — это означает, что шпиндель спроектирован исходя из минимальных требований, минимум подшипников, минимум защит, минимум точности при изготовлении. Дешево и сердито, по сути — расходный материал, ремонтопригодность близка к нулю, т.к. стоимость ремонта сопоставима с ценой нового шпинделя. Таковы серии популярных китайских шпинделей GDZ и TDK, в противоположность сериям GDK, в которых в переднем и заднем узле стоят полноценные дуплексы, с тщательным выполнением натяга, передний подшипниковый узел защищен от пыли накладкой и т.п.

Как выбрать скорость и мощность шпинделя

Скорость вращения шпинделя определяется видами фрез и обрабатываемыми материалами. Обычно последовательность такая — исходя из изделий определяется диапазон моделей фрез, исходя из него по каталогам производителей определяется диапазон скоростей резания, а по ним соот-но диапазон скоростей вращения шпинделя.

Вы планируете работать по дереву, вырезая рельефы с большим количеством мелких деталей.

В этом случае вы много будете работать с мелкими фрезами и граверами, для чего требуется шпиндель с большими оборотами — 24000 об/мин(а лучше больше, например 36000), и станок с высокой скоростью подачи (5000 мм/мин). А также будут использоваться фасонные и пазовые фрезы большого диаметра, что накладывает ограничения на минимальную мощность шпинделя — она должна быть достаточно большой, чтобы фреза не вязла в материале, в зависимости от диаметра фрез и режима работы — от 2.2 до 7 кВт.

Читайте также  Эмиттер коллектор база

Планируется станок для обработки алюминиевых сплавов небольшими цельными твердосплавными фрезами.

Исходя из чертежа изделий, максимальный диаметр фрезы, который потребуется — 16 мм, минимальный — 0.2 мм, основная работа будет вестись фрезами диаметром 6-10 мм. Согласно каталогам производителя фрез ZCC-CT, рекомендуемая скорость вращения фрез диаметром 6 мм — 13000 об/мин с подачей 1250 мм/мин, 10 мм — 8000 об/мин с подачей 1600 мм/мин,откуда следует задача подобрать шпиндель, оптимально работающий на скорости 10-12 тыс. об/мин, но при этом имеющий запас как по увеличению скорости, так и по уменьшению. Ременноприводные шпиндели не разгоняются выше 8 тыс. оборотов, поэтому работа мелкими фрезами будет происходить очень медленно, а обычные водоохлаждаемые электрошпиндели в целом хотя могут работать в таком режиме, но могут возникнуть проблемы с работой большими фрезами на низких оборотах, поэтому наиболее подходящим вариантов видятся электрошпиндели с 2 парами полюсов — у них базовая частота вращения ниже вдвое (до 12 000 об/мин обычно), но за счет этого момент вращения увеличен пропорционально — на 8000 об/мин они выдадут момент в несколько раз больший, чем водник с одной парой полюсов, а кроме того, ничто не запрещает настроить частотник на превышение базовой частоты, что(с падением момента, конечно) позволит фрезеровать мелкими фрезами с частотой выше базовой.

Планируется станок для обработки небольших алюминиевых и стальных деталей, с небольшим съемом и заглублением.

Данная задача несколько противоречива, сталь настолько по режимам обработки отличается от алюминия, что для них по-хорошему нужны 2 разных станка. Если такое невозможно, то надо определиться, либо мы хорошо обрабатываем алюминий и кое-как сталь, либо хорошо обрабатываем сталь и медленно алюминий. В случае второго варианта мы для начала сразу отказываемся от скоростных электрошпинделей — в них стоят слишком слабые подшипники, они рассчитаны на большую скорость и маленькие усилия, тогда как при обработке стали все наоборот и подшипники просто долго не проживут. Во вторую очередь — шпиндель по стали требуется весьма крупный, по той же причине (размер подшипников), и конусов типа BT30/ISO30 очевидным образом будет недостаточно. Ну и далее определяется, какого размера будут фрезы и скорость вращения. Для фрезы диаметром 6 мм требуется 7000 об/мин при подаче 675 мм/мин, для фрез 20 мм — 2000 об/мин, таким образом нам подойдет шпиндель с конусом BT40 и скоростью вращения до 8000 об/мин. Если работа будет в основном мелкими фрезами, то задача несколько усложняется — использовать шпиндели с механическим приводом также возможно, но подачи станут совсем низкими.
Также, скорее всего вам потребуется шпиндель с отверстием для подачи СОЖ в конус — инструмент склонен очень сильно греться при работе со сталью, просто полива может не хватать и многие виды работ потребуют подачи СОЖ сквозь фрезы и сверла.

После определения основных моментов, можно попробовать дополнительно сузить выбор.

Для того, чтобы научиться читать кинематические схемы, необходимо знать обозначения отдельных элементов и научиться понимать взаимодействие отдельных составляющих. В первую очередь изучим наиболее обозначения наиболее распространенных элементов, условные обозначения на кинематических схемах представлены в ГОСТ 3462-52.

Обозначение валов

Вал на кинематической схеме обозначается жирной прямой линией. На схеме шпинделя изображается наконечник.

Обозначение подшипников на схемах

Обозначение подшипника зависит от его типа.

Подшипник скольжения изображается в виде обычных скоб-опор. Если подшипник упорный опоры изображаются под углом.

Шариковые подшипники на кинематических схемах станков изображаются следующим образом.

Шарики в подшипниках условно изображены в виде круга.

В условных изображениях роликовых подшипников ролики показаны в виде прямоугольников.

Схематическое обозначение соединений деталей

В кинематических схемах изображаются различные типы соединений валов и деталей.

Муфты на кинематической схеме

Условное обозначенние муфты зависит от ее типа, наиболее распространенные из них:

  • кулачковые
  • фрикционные

Обозначения односторонних муфт на кинематических схемах станков показано на рисунке.

Обозначение двусторонней муфты можно получить зеркально отобразив по горизонтали схему односторонней.

Обозначение зубчатых передач на схемах станков

Зубчатые передачи — один из самых распространенных элементов станков. Условное обозначение позволяет понять какой тип передачи используется — прямозубая, кососзубая, шевронная, коническая, червячная. Кроме того, по схеме можно узнать какое колесо больше, а какое меньше.

Ходовые винты и гайки также достаточно часто можно увидеть на кинематических схемах станков, изображаются они следующим образом.