Тиристор обозначение

Тиристором может считаться любой радиоэлектронный прибор, обладающий следующей вольт-амперной характеристикой. На применения в электронных схемах внутреннее устройство тиристора влияния не оказывает. Применение тиристоров основано на особенностях их вольт-амперной характеристики.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Фото — применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Тиристор обозначение

В 14 раз выросло количество россиян на MediaTek Labs ? проекте по созданию устройств «интернета вещей» и «носимых гаджетов»

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Новое поколение Джобсов или как MediaTek создал свой маленький «Кикстартер»

Амбициозная цель компании MediaTek — сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик — порог входа очень низкий.

Семинар и тренинг «ФеST-TIваль инноваций: MAXIMум решений!» (14-15.10.2013, Новосибирск)

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений. который пройдет 14 и 15 октября в Новосибирске.

Популярные материалы

Комментарии

люди куплю транзистар кт 827А 0688759652

как молоды мы были и как быстро пробежали годы кулотино самое счастливое мое время

Светодиод — это диод который излучает свет. А если диод имеет ИК излучение, то это ИК диод, а не «ИК светодиод» и «Светодиод инфракрасный», как указано на сайте.

Подскажите 2т963а-2 гарантийный срок

Реклама

На нашем сайте представлена документация на отечественные маломощные тиристоры серий:

Буквенные обозначения параметров тиристоров

Согласно ГОСТ 15133-77 переключательные полупроводниковые приборы с двумя устойчивыми состояниями, имеющими три или более р-п переходов, объединяются под общим названием тиристоры.

Тиристоры работают как ключи в импульсных режимах с токами, значительно превышающими допустимые постоянные токи в открытом состоянии. Предназначены для применения в схемах преобразователей электрической энергии, импульсных модуляторов, бесконтактной регулирующей аппаратуры, избирательных и импульсных усилителей, генераторов гармоничных колебаний, инверторов и других схем, выполняющих коммутационные функции.

К основным параметрам тиристоров, устанавливаемым ГОСТ 20332-84, относятся параметры предельно допустимых режимов в закрытом состоянии, в обратном непроводящем состоянии, в открытом состоянии и по цепи управления, а также динамические и тепловые параметры:

  • постоянное напряжение в закрытом состоянии Uзс — наибольшее прямое напряжение, которое может быть приложено к прибору и при котором он находится в закрытом состоянии;
  • импульсное неповторяющееся напряжение в закрытом состоянии Uзс, нп — наибольшее мгновенное значение любого неповторяющегося напряжения на аноде, не вызывающее его переключение из закрытого состояния в открытое;
  • постоянное обратное напряжение Uобр — наибольшее напряжение, которое может быть приложено к прибору в обратном направлении;
  • обратное напряжение пробоя Uпроб — обратное напряжение прибора, при котором обратный ток достигает заданного значения;
  • напряжение переключения Uпрк — прямое напряжение, соответствующее точке переключения (перегиба вольт-амперной характеристики);
  • напряжение в открытом состоянии Uос — падение напряжения на тиристоре в открытом состоянии;
  • импульсное напряжение в открытом состоянии Uос, и — наибольшее мгновенное значение напряжения в открытом состоянии, обусловленное импульсным током в открытом состоянии заданного значения;
  • импульсное отпирающее напряжение Uот, и — наименьшая амплитуда импульса прямого напряжения, обеспечивающая переключение (динистора, тиристора) из закрытого состояния в открытое;
  • постоянное отпирающее напряжение управления Uу, от — напряжение между управляющим электродом и катодом тринистора, соответствующее отпирающему постоянному току управления;
  • импульсное отпирающее напряжение управления Uу, от, и — импульсное напряжение на управляющем электроде, соответствующее импульсному отпирающему току управления;
  • неотпирающее постоянное напряжение управления Uу, нот — наибольшее постоянное напряжение на управляющем электроде, вызывающее переключение тринистора из закрытого состояния в открытое;
  • повторяющиеся импульсное напряжение в закрытом состоянии Uзс, п — наибольшее мгновенное значение напряжения в закрытом состоянии, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения;
  • повторяющееся импульсное напряжение Uобр, п — наибольшее мгновенное значение обратного напряжения, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения;
  • запирающее постоянное напряжение управления Uу, з — постоянное напряжение управления тиристора, соответствующее запирающему постоянному току управления;
  • запирающее импульсное напряжение управления Uу, з, и — импульсное напряжение управления тиристора, соответствующее запирающему току управления;
  • незапирающее постоянное напряжение Uу, нз — наибольшее постоянное напряжение управления, не вызывающее выключение тиристора;
  • пороговое напряжение Uпор — значение напряжения тиристора, определяемое точкой пересечения линии прямолинейной аппроксимации характеристики открытого состояния с осью напряжения;
  • постоянный ток в закрытом состоянии Iзс — ток в закрытом состоянии при определенном прямом напряжении;
  • средний ток в открытом состоянии Iос, ср — среднее за период значение тока в открытом состоянии;
  • постоянный обратный ток Iобр — обратный анодный ток при определенном значении обратного напряжения;
  • ток переключения Iпрк — ток через тиристор в момент переключения (Uпрк и Iпрк указываются только для динисторов);
  • повторяющийся импульсный ток в открытом состоянии Iос, п — наибольшее мгновенное значение тока в открытом состоянии, включая все повторяющиеся переходные токи;
  • ударный ток в открытом состоянии Iос, упр — наибольший импульсный ток в открытом состоянии, протекание которого вызывает превышение допустимой температуры перехода, но воздействие которого за время срока службы тиристора предполагается с ограниченным числом повторений;
  • постоянный ток в открытом состоянии Iос — наибольшее значение тока в открытом состоянии;
  • повторяющийся импульсный ток в открытом состоянии Iос, п — наибольшее мгновенное значение тока в открытом состоянии, включая все повторяющиеся переходные токи;
  • повторяющийся импульсный ток в закрытом состоянии Iзс, п — импульсный ток в закрытом состоянии, обусловленный повторяющимся импульсным напряжением в закрытом состоянии;
  • повторяющийся импульсный обратный ток Iобр, п — обратный ток, обусловленный повторяю- щимся импульсным обратным напряжением;
  • отпирающий постоянный ток управления Iу, от — наименьший постоянный ток управления, необходимый для включения тиристора (из закрытого состояния в открытое);
  • отпирающий ток управления Iу, от, и — наименьший импульсный ток управления, необходимый для включения тиристора;
  • запирающий импульсный ток управления Iу, з, и — наибольший импульсный ток управления, не вызывающий включение тиристора;
  • ток удержания Iуд — наименьший прямой ток тиристора, необходимый для поддержания тиристора в открытом состоянии;
  • ток включения тиристора Iвкл — наименьший основной ток, необходимый для поддержания тиристора в открытом состоянии после окончания импульса тока управления после переключения тиристора из закрытого состояния в открытое;
  • запираемый ток тиристора Iз — наибольшее значение основного тока, при котором обеспечивается запирание тиристора по управляющему электроду;
  • средняя рассеиваемая мощность Pср — сумма всех средних мощностей, рассеиваемых тиристоров;
  • время включения тиристора tу, вкл, tз, вкл — интервал времени, в течение которого тиристор включается отпирающим током управления или переключается из закрытого состояния в открытое импульсным отпирающим током;
  • время нарастания tу, пнр, tнр — интервал времени между моментом, когда основное напряжение понижается до заданного значения, и моментом, когда оно достигает заданного низкого значения при включении тиристора отпирающим током управления или переключении импульсным отпирающим напряжением;
  • время выключения tвыкл — наименьший интервал времени между моментом, когда основной ток тиристора после внешнего переключения основных цепей понизится до нуля, и моментом, в который определенное основное напряжение проходит через нулевое значение без переключения тиристора;
  • критическая скорость нарастания напряжения в закрытом состоянии (Uзс /dt)кр — наибольшее значение скорости нарастания напряжения в закрытом состоянии, которое не вызывает переключение тиристора из закрытого состояния в открытое;
  • критическая скорость нарастания коммутационного напряжения (Uзс /dt)ком — наибольшее значение скорости нарастания основного напряжения, которое после нагрузки током в открытом состоянии или обратном проводящем состоянии в противоположном направлении не вызывает переключение тиристора из закрытого состояния в открытое.
Читайте также  Как определить класс точности прибора

Николай пишет.

Жаль что нет зарубежных.
Найти время выключения для ВТ136 найти не могу

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Где применяются тиристоры

Область применения тиристоров обширна. К примеру, из них можно собрать инвертор для сварки или зарядное автомобильное устройство. Некоторые умельцы своими руками собирают даже генераторы. Самое важное, что тиристоры могут через себя пропускать токи и высокочастотные, и низкочастотные. Поэтому, собрав мост из этих приборов, можно изготовить трансформатор и для сварочного аппарата.

Cхема управления тиристором

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy отпирающее постоянное напряжение управления – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max – обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос срсреднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.

Тиристорный светодиод

Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.