Режимы резания при фрезеровании

Режимы резания при фрезеровании

Содержание: Скрыть Открыть

  • Особенности фрезерования
  • Параметры режима резания
  • Ширина и глубина
  • Подача и скорость фрезы
  • Рекомендации при выборе режима

Выбор режима резания играет основную роль при любой металлорежущей операции, и особенно при фрезеровании. От этого зависит производительность работ, возможность максимального использования ресурсов станка, стойкость инструмента и качество конечного результата. Для выбора режима резания разработаны специальные таблицы, но есть ряд общих понятий, которые необходимо знать любому фрезеровщику.

Правила выбора режима резания при фрезеровании фрезами — таблицы и советы

На предприятиях, в составе которых есть подразделения, занимающиеся поверхностной обработкой заготовок, на основе нормативных документов составляются специальные карты, которыми руководствуется оператор при изготовлении той или иной детали. Хотя в некоторых случаях (к примеру, новое оборудование, инструмент) нюансы технологических операций фрезеровщику приходится определять самостоятельно. Если маломощный станок эксплуатируется в домашних условиях, тем более, никаких официальных подсказок под рукой, как правило, нет.

Эта статья поможет не только понять, на основе чего производится расчет режима резания при фрезеровании и выбор соответствующего инструмента, но и дает практические рекомендации, которые достаточны для обработки деталей на бытовом уровне.

Особенность фрезерования в том, что режущие кромки вступают в прямой контакт с материалом лишь периодически. Как следствие – вибрации, ударные нагрузки и повышенный износ фрез. Наиболее эффективным режимом считается такой, при котором оптимально сочетаются следующие параметры – глубина, подача и скорость резания без ухудшения точности и качества обработки. Именно это позволяет существенно снизить стоимость технологической операции и повысить производительность.

Предусмотреть буквально все нюансы фрезерования невозможно. Заготовки, подлежащие обработке, отличаются структурой, габаритами и формой; режущие инструменты – своей геометрией, конструктивным исполнением, наличием/отсутствием защитного слоя и тому подобное. Все, что изложено по режимам резания далее, следует рассматривать всего лишь как некий ориентир. Для уточнения конкретных параметров фрезерования следует пользоваться специальными таблицами и справочными данными.

Выбор инструмента

Главным образом это относится к его диаметру. В чем особенность подбора фрезы (все виды описаны здесь) по этому параметру?

    Повышение диаметра автоматически приводит к увеличению стоимости инструмента. Взаимозависимость двух показателей – если подача возрастает, то скорость резания падает, так как она ограничивается структурой обрабатываемой детали (см. ниже).

Скорость резания

В зависимости от материала образца можно ориентироваться на следующие показатели (м/мин):

    древесина, термопласты – 300 – 500; ПВХ – 100 – 250; нержавейка – 45 – 95; бронза – 90 – 150; латунь – 130 – 320; бакелит – 40 – 110; алюминий и его сплавы – 200 – 420.

Частота вращения фрезы

Простейшая формула выглядит так:

n (число оборотов) = 1000 Vc (желаемая скорость реза) / π D (диаметр фрезы).

Подача

На этот параметре фрезерования следует обратить пристальное внимание!

Долговечность фрезы и качество обработки заготовки зависят от того, какой толщины слой снимается за одну проходку, то есть при каждом обороте шпинделя. В этом случае говорят о подаче на 1 (2,3) зуба, в зависимости от разновидности инструмента (фреза одно- , двух- или трехзаходная).

Рекомендуемые значения подачи «на зуб» указываются производителем инструмента. Фрезеровщик по этому пункту режима резания сталкивается с трудностями, если работает с фрезами «made in China» или какого-то сомнительного (неизвестного) происхождения. В большинстве случаев можно ориентироваться на диапазон подачи (мм) 0,1 – 0,25. Такой режим подходит практически для всех распространенных материалов, подвергающихся обработке фрезерованием. В процессе реза станет понятно, достаточно или несколько «прибавить» (но не раньше, чем после 1-го захода). А вот менее 0,1 пробовать не стоит, разве только при выполнении ювелирной работы с помощью микрофрез.

Полезные советы

    Превышение значения оптимальной подачи чревато повышением температуры в рабочей области, образованием толстой стружки и быстрой поломкой фрезы. Для инструмента диаметром свыше 3 мм начинать следует с 0,15, не более Если скорость фрезерования детали повысить за счет оптимального использования возможностей оборудования не получается, можно попробовать установить фрезу двухзаходную. При выборе инструмента нужно учитывать, что увеличение длины режущей части приводит к снижению подачи и увеличению вибраций. Не следует стремиться повысить скорость обработки за счет замены фрезы на аналогичную, но с большим количеством зубьев. Стружка от такого инструмента отводится хуже, поэтому часто приводит к тому, что качество фрезерования резко снижается. В некоторых случаях, при полной забивке канавок, фреза начинает работать «вхолостую». Толку от такой замены никакого.

Вывод

Качественного фрезерования можно добиться только опытным путем. Конкретные станок + инструмент + практический опыт, навыки. Поэтому не стоит слепо доверять даже табличным данным. Например, в них не учитывается степень износа фрезы, с которой предстоит работать. Не нужно бояться экспериментировать, но начинать всегда следует с минимального значения параметров. Когда мастер «почувствует» и станок, и фрезу, и обрабатываемый материал, он сам определит, в каком режиме стоит работать.

Способы повышения эффективности работы станка

Если планируется обработка пластика на фрезерном станке, рекомендуется использовать заготовки, полученные методом литья. Температура плавления таких деталей более высокая, благодаря чему риск получения повреждений при обработке сводится к минимуму. Наиболее оптимальный среди режимов для литых пластиковых заготовок – встречное фрезерование.

При работе с акрилом или алюминием следует применять смазочно-охлаждающие жидкости. Наиболее приемлемый вариант – универсальная техническая смазка. Если она отсутствует, охладить инструмент можно при помощи обычной воды. Аналогичные требования к полистиролу.

Если в процессе обработки акриловой детали затупилась фреза, необходимо снизить обороты. Снижение необходимо выполнять до возникновения колкой стружки. Чем ниже обороты, тем больше нагрузки получает режущий механизм. Поэтому описанная задача должна выполняться осторожно – в противном случае появляется риск поломки фрезерного станка. Это необходимо учесть тем, кто ранее резал неправильно.

Выполняя сверление или резку заготовок из пластика и мягкого металла, рекомендуется использовать фрезу однозаходного типа. Благодаря этому условию зона резанья не нагревается, и на нее не попадает стружка. В особенности это условие актуально при резке фанеры. Фанера может легко загореться от высокой температуры.

Многие люди режут материал поэтапно. Но наиболее подходящими режимами изготовления детали являются непрерывные виды обработки. Она обеспечивает стабильную нагрузку на рабочий станок, и сводит к минимуму риск возникновения дефектов на дереве или другом материале.

Чтобы показатель шероховатости поверхности не превышал норму, размер шага фрезы не должен быть больше ее диаметра. Для качественной фрезерной обработки необходимо минимум два прохода, одним из которых будет чистовой.

Если обрабатываются мелкие элементы, необходимо пользоваться уменьшенной скоростью. Если ее не снизить, в процессе обработки некоторые элементы детали могут отколоться, образовав дефект.

Важно! Скорость регулирует программное обеспечение станка.

Вид фрезы: 1 или 2 лезвия?

В производстве рекламы чаще всего используются 1 и 2-заходные, реже 3-заходные фрезы. Четырех и с большим количеством лезвий фрезы не могут снимать толстую стружку в мягких материалах, и как правило, не используются. Основная их проблема при фрезеровании мягких материалов — это «запекание» в полостях фрезы. 1-заходные фрезы благоприятствуют лучшему выводу стружки за счет более просторного желоба фрезы. Специальные фрезы для алюминия имеют большой желоб. Особенно имеют преимущества при обработке мягкого алюминия, наряду с отполированным резцом, покрытие с Titan-Nitrid (TiN).

Выбор «идеального» типа фрезы всегда зависит от обрабатываемого материала:

При фрезеровке «мягких» материалов: мягких пластмасс (ПВХ, плексиглас, пенопласты), деревянных материалов (древесина, волокнистая плита, фанера, ДСП), мягких сортов алюминия и сэндвичей (алюминий / пластмассы) в выигрыше острые 1-заходные фрезы. Так как здесь проблема более скорого затупления предпочтительнее чем опасность засорения и поломки фрезы.
Для жестких пластмасс пригодны острые 2-заходные, с профилем рыбьего хвоста.
При обработке более жестких металлов таких как латунь можно рекомендовать 2-заходные фрезы с плоской заточкой.
При фрезеровке крайне жесткой конструкционной стали или совсем высококачественной стали, используют трех-четырех заходные фрезы.

Однозаходная фреза в поперечном разрезе
Один нож оставляет большое открытое пространство
для вывода стружки

Трехзаходная фреза в поперечном разрезе
Три лезвия существенно уменьшают пространство
для вывода стружки

Различия между фрезой и гравером
Многие используют понятие «Фреза» и „Гравер“ как синонимы. Тем не менее, речь идет о двух разных инструментах.
Гравер — это простой инструмент, разделенный пополам цилиндр, с последующей задней шлифовкой.
Форма может быть различна; наиболее распространены треугольные . В противоположность фрезам у них нет спиралевидного желоба для отвода стружки.

Материал фрез: HSS или твердосплавные ?
В рекламной технике преимущественно используются фрезы из твердого сплава.
Твердый сплав (HM) — дорогой, искусственный продукт, который агломерируется из мельчайших порошков (например, Wolfram-Carbid). В процесс агломерации сразу создается форма фрезы и в последствии не изменяется, (только затачивается). Твердый сплав крайне жесткий и износостойкий, однако, восприимчив к вибрациям и ударам. Важно при использовании фрез HM иметь стабильный, возможно более тяжелый и массивный станок, шпиндель с точным вращением и высококачественные цанги зажима. Фрезеруемый материал должен быть жестко и неподвижно зафиксирован на станке.
Быстрорежущая сталь (HSS) используется прежде всего, там, где твердый сплав слишком чувствителен: при фрезерной обработке нержавеющей листовой стали, на шатких машинах, или в случаях, когда жесткость фиксации недостаточно обеспечена. HSS значительно быстрее снашивается, но угроза преждевременной поломки меньше, по причине ее вязкости.
Жизнь HSS фрезы с покрытием значительно увеличивается. Например, для нитрида титана (TiN) срок службы увеличивается в шесть раз.
Titan-Nitrid существенно жестче чем HSS, а также жестче чем HM. С Titan-Nitrid покрытием инструменты HM служат также дольше, хотя различие в твердости незначительное.
Более значительно покрытие отражается на число оборотов и подачу. Ее можно увеличивать и укорачивать таким образом время обработки. При фрезеровке алюминия TiN предотвращает внушающее страх запекание алюминия во фрезе. Покрытие действует как тефлон в сковороде (стружка скользит)

Читайте также  Присадочный фрезер

Число оборотов и оптимальная подача

Принципиально считается: Чем выше скорость резания (vc = p * d * n), тем более гладкой будет поверхность. Однако, затупление фрезы тоже растет с увеличением скорости разания.

Процедура расчета:

1. Число оборотов n:
Выберите скорость разания vc из таблицы. (Если скорость резания материала сильно варьируется, уточните в справочниках).
На основании данных вычислите число оборотов шпинделя

n [U/min] = (vc [m/min] *1000) / (3.14 * d [mm])

2. Подача f:
Выберите рекомендованную подачу на каждый зуб (коэффициент fz) с использованием той же таблицы и отсюда вычислите подачу:

f [mm/min] = n * fz * z
fz = подача на 1 зуб
z = количества лезвий

Пример:
Вы хотите фрезеровать 2-заходной фрезой, диаметром 3 мм жесткий алюминий. Из таблицы Вы находите: vc = 100. 200 м / мин. Из этого Вы рассчитываете:

Макс. число оборотов: n = (200 * 1000) / (3.14 * 3) = 200 000 / 9.42 = 21.230 U/min
Соответствующая подача: f = 21230 * 0.04 * 2 = 1698 mm/min

Высокая скорость подачи — особенно в металлах — требует стабильной и бесшумной машины. Кроме того, глубина паза не должна быть слишком большой (около 1 * d 1).
Для менее стабильных машин или при повышеной глубине фрезеровки режим расчитывается следующим образом:

Макс. число оборотов:
n = (200 * 1000) / (3.14 * 3) = 200 000 / 9.42 = 21.230 U/min (как выше)
Миним. число оборотов: n = (100 * 1000) / (3.14 * 3) = 100 000 / 9.42 = 10.615 U/min
Соответствующая подача (минимальная): f = 10615 * 0.04 * 2 = 849 mm/min

Вы комбинируете n=21230 U / min и f = 849 mm/min.

Режимы резания при фрезеровании

Расчет режимов фрезерования заключается в определении скорости резания, частоты вращения фрезы, и выбора подачи. При фрезеровании различают два основных движения: вращение фрезы вокруг своей оси — главное движение и перемещение заготовки относительно фрезы — движение подачи. Скорость вращения фрезы называют скоростью резания, а скорость перемещения детали — подачей. Скорость резания при фрезеровании — это длина пути (в м), которую проходит за 1 мин наиболее удаленная от оси вращения точка главной режущей кромки.

Скорость резания легко определить, зная диаметр фрезы и частоту ее вращения (число оборотов в минуту). За один оборот фрезы режущая кромка зуба пройдет путь, равный длине окружности, имеющей диаметр D:

l = πD, где l — путь режущей кромки за один оборот фрезы.

Длина пути

Длина пути, пройденная кромкой зуба фрезы в единицу времени,

L = ln = πDn, где n — частота вращения, об/мин.

Скорость резания

Принято обозначать диаметр фрезы в миллиметрах, а скорость резания в метрах в минуту (м/мин), поэтому написанную выше формулу можно записать в виде:

Частота вращения фрезы

В производственных условиях часто требуется определить необходимую частоту вращения фрезы для получения заданной скорости, резания. В этом случае используют формулу:

Подача при фрезеровании

При фрезеровании различают подачу на зуб, на оборот и минутную подачу. Подачей на зуб Sz называют расстояние, на которое перемещается заготовка (или фреза) за время поворота фрезы на один шаг, т. е. на угол между двумя соседними зубьями. Подачей на оборот S называют расстояние, на которое перемещается обрабатываемая деталь (или фреза) за время одного полного оборота фрезы:

Минутная подача

Минутной подачей Sм называют расстояние, на которое перемещается заготовка (или фреза) в процессе резания за 1 мин. Минутная подача измеряется в мм/мин:

Определение времени фрезерования детали

Зная минутную подачу, легко подсчитать время, необходимое для фрезерования детали. Для этого достаточно разделить длину обработки (т. е. путь, который должна пройти заготовка по отношению к фрезе) на минутную подачу. Таким образом, по величине минутной подачи удобно судить о производительности обработки. Глубиной резания t называют расстояние (в мм) между обрабатываемой и обработанной поверхностями, измеренное перпендикулярно обработанной поверхности, или толщину слоя металла, снимаемого за один проход фрезы.

Скорость резания, подача и глубина резания являются элементами режима резания. При наладке станка устанавливают глубину резания, подачу и скорость резания, исходя из возможностей «режущего инструмента, способа фрезерования обрабатываемого материала и особенностей обработки. Чем большее количество металла в единицу времени фреза снимает с заготовки, тем выше будет производительность фрезерования. Естественно, что производительность фрезерования при прочих равных условиях будет повышаться с увеличением глубины резания, подачи или скорости резания.

Справочник зубореза — Страница 11

Схемы фрезерования.

Зубофрезерование, как и другие виды фрезерования, можно осуществить по схеме встречного или попутного фрезерования.

При встречном фрезеровании направление скорости резания противоположно (встречно) направлению подачи заготовки (рис. 24, а). Подача осуществляется сверху вниз. Зуб фрезы в начале резания срезает тонкую стружку, наибольшая ее толщина достигается при выходе зуба фрезы из заготовки.

При попутном фрезеровании, направление скорости резания совпадает (попутно) с направлением подачи заготовки (рис. 24, б). Подача осуществляется снизу вверх. Зуб фрезы начинает срезать стружку при наибольшей ее толщине.

В современных зубофрезерных станках предусматривается возможность попутного фрезерования, позволяющего повысить скорость резания на 20—25%, увеличить стойкость фрезы, более равномерно нагружая ее зубья, и уменьшить шероховатость поверхности нарезаемых зубьев.

Рнс. 24. Схемы зубофрезерования:

а — встречное; 6 — попутное; 1 — подача фрезы; 2 — направление скорости резания

Диагональное зубофрезерование.

Диагональное зубофрезерование заключается в том, что для обеспечения более равномерного износа фрезы вдоль зубьев и повышения ее стойкости наряду с вертикальной подачей фреза имеет периодическую или непрерывную осевую подачу. Для этого зубофрезерные станки оснащают соответствующими механизмами. На станках мод. 5К32 можно осуществить диагональное нарезание прямозубых колес дополнительной настройкой гитары осевой подачи фрезы и дифференциала. Более подробно этот метод описан в различных работах; например, Лоскутов В. В., Ничков А. Г. Зубообрабатывающие станки. М.: Машиностроение, 1978.

Качество обработки.

При нарезании колес червячными фрезами на зубофрезерных станках общего назначения без дополнительной отделки могут быть достигнуты 6—7-я степени точности (по ГОСТ 1643—81) при условии применения прецизионных фрез, особо точной установки фрезы и детали. При работе в обычных условиях достигаются 8—9-я степени точности по ГОСТ 1643—81.

Причины погрешностей колес при нарезании на зубофрезерных станках приведены в табл. 15.

15. Источники погрешностей зубчатых колес при нарезании их на зубофрезерных станках

Примечания: 1. Влияние точности установки инструмента и заготовки не учтено.

2. Знак «+» означает, что погрешность станка и инструмента влияет на точность нарезаемого колеса по указанному показателю.

Параметр шероховатости боковых поверхностей зубьев, нарезанных червячной фрезой, от Rz = 10-40 мкм до Ra = 2,5-2,0 мкм (по ГОСТ 2789—73*). Он зависит от обрабатываемого материала, состояния инструмента и станка, смазочно-охлаждающей жидкости, режимов резания (главным образом от подачи) и модуля. При обработке червячными фрезами неизбежна огранка в результате формирования зуба колеса рядом последовательных резов и волнистость боковой поверхности зуба с шагом, равным подаче Sо. Огранку и волнистость можно определить по графикам, приведенным на рис. 25.

Рис. 25. Номограмма для расчета:

а — высоты огранки hг; б — высоты волнистости hs (сплошные линии — однозаходный инструмент; штриховые — двухзаходный инструмент)

Припуск на чистовое нарезание равен (0,1—0,15). В некоторых случаях при изготовлении менее точных колес с модулем до 5 мм или при обработке с последующим шевингованием зубья можно фрезеровать за один проход.

При изготовлении колес в ряде случаев чистовую обработку зубьев ведут на специальных станках.

Основное время (в мин) одного прохода при нарезании колес червячной фрезой определяют по формуле:

где В — ширина нарезаемого венца, мм; l — глубина врезания фрезы, мм; l1 — перебег, мм; ZR — число нарезаемых зубьев; n — частота вращения фрезы, об/мин; So — осевая подача фрезы на оборот стола, мм/об; k — число заходов фрезы; L — общая длина хода фрезерного суппорта, мм; Sm — минутная подача фрезы, мм/мин.

Глубину врезания для прямозубых колес определяют по формуле:

где De — диаметр фрезы, мм; t — глубина фрезерования, мм.

Перебег l1 для прямозубых колес обычно принимают равным 3—5 мм, для косозубых колес l1 = Зm tg (BПи — w) + (З-5) мм. Значения глубины врезания и перебега червячных фрез приведены в табл. 16.

Для снижения времени врезания рекомендуется производить не осевое, а радиальное врезание (сближение фрезы и заготовки в процессе резания до требуемой глубины фрезерования с последующим переключением станка на осевую подачу). Основное время можно определить после назначения режимов резания.

Стойкость фрезы и режимы резания.

Червячные фрезы изнашиваются по задней поверхности зубьев, на которой появляется фаска износа (рис. 26). Изношенные фрезы перетачивают по передней поверхности зубьев, а в случае большого износа зубья перешлифовывают по всему профилю. Поэтому во избежание чрезмерного расхода инструмента и повышения трудоемкости переточек износ не должен превышать допускаемых значений.

Рис. 26. Износ зуба червячной фрезы:

1 — по задней поверхности; 2 — по боковой поверхности; 3 — по передней поверхности; б — наибольшая ширина фаски износа

Читайте также  Станок для изгиба арматуры своими руками

При чистовых операциях от износа фрез зависит точность нарезаемых колес и шероховатость поверхности зуба. Рекомендуемые значения износа даны в табл. 17.

17. Износ фрез, мм

При чистовой обработке колес 6-й степени точности и точнее допускаемый износ не должен превышать 0,05 мм.

Стойкость Т фрезы — основное (машинное) время ее работы между переточками — зависит от обрабатываемого материала и режимов резания. Если фактическая стойкость инструмента велика, это значит, что режимы резания занижены, следовательно, производительность операции занижена. При слишком малых значениях стойкости расход инструмента возрастает ввиду частых его переточек, и повышаются затраты времени на его замену. Рекомендуются следующие значения стойкости червячных фрез:

Модуль, мм . , 4 б 8 12 >16 и более
Стойкость Т, ч . 4 б 8 12 16

Во время чистового прохода замена фрезы недопустима. Следовательно, стойкость фрезы должна быть не менее машинного времени, требуемого для чистовой обработки одного крупного колеса.

Фреза изнашивается неравномерно по длине, а часть зубьев, не участвующая в резании, не изнашивается совсем. Поэтому стойкость фрезы может быть повышена за счет ее осевых перемещений (рис. 27, табл. 18), при которых вводятся в работу незатупленная и малозатупленная части фрезы. Расстояние Л, соответствующее начальной установке фрезы, принимают равным 1,4 В при нарезании прямозубых колес и 2 В при обработке косозубых колес.

Рис. 27. Схема осевых перемещений червячной фрезы

1 — направление перемещения фрезы.

При чистовой обработке число возможных переточек в 2-3 раза больше. Числа возможных переточек червячных фрез в зависимости от модуля указаны в табл. 19.

Эти данные рассчитаны исходя из того, что при переточках зуб фрезы может быть срезан на величину, равную 0,3 окружного шага фрезы.

19. Число переточек червячных фрез

Режимы резания определяют в следующей последовательности: выбирают стойкость фрезы, число4 проходов и подачу; определяют скорость резания и частоту вращения фрезы; проверяют мощность резания и определяют основное время.

Выбор стойкости фрезы. При заданном инструменте наибольшее влияние на фактическую стойкость фрезы оказывает твердость материала обрабатываемой заготовки, скорость резания, подача, модуль и припуск.

В целях повышения производительности операции при заданной стойкости инструмента выгодно увеличивать подачу, соответственно снижая скорость резания.

Выбор числа проходов (глубины фрезерования). Полную обработку зуба следует производить не более чем на два-три прохода. Если ввиду недостаточной мощности или жесткости станка приходится производить два черновых прохода, то глубину фрезерования принимают обычно при первом проходе t= 1,4 m, при втором t = 0,8 m. При черновом проходе желательно прорезать впадину почти на всю глубину (для этого необходимо применять черновую фрезу с зубьями уменьшенной толщины), чтобы чистовая фреза лишь слегка работала наружными режущими кромками. При фрезеровании колес с последующим шевингованием или шлифованием обычно применяют обработку за один проход.

Припуск на толщину зуба следует оставлять минимальным, чтобы при чистовом проходе были обеспечены требуемые точность и шероховатость поверхности зуба. Припуск выбирают в зависимости от диаметра нарезаемого колеса, обычно он равен (0,1—0,15) т, В некоторых случаях для повышения качества обработки колес больших модулей указанный припуск срезают за два чистовых прохода (после одного чернового прохода).

При чистовом зубофрезеровании крупномодульных колес припуск можно определить по табл. 20.

20. Глубина резания при чистовом зубонарезании червячной фрезой

Выбор подачи. Для обеспечения более высокой производительности следует работать с возможно большими подачами. При черновом проходе подача обычно ограничивается ввиду вибрации фрезерного суппорта, возникающей при недостаточной жесткости системы станок-деталь—фрезы, а при чистовом — шероховатостью поверхности нарезаемых зубьев.

В зависимости от жесткости станка (табл. 21) и модуля иарезаемого колеса, а также от материала, конструкции фрезы и наклона зуба по табл. 22 можно выбрать подачу для чернового нарезания. Для чистового нарезания подачу можно выбирать по табл. 23.

Скорость резания определяют исходя из ранее принятых значений подачи и стойкости, с учетом свойств обрабатываемого материала, модуля колеса и других условий работы. В табл. 24 приведены значения скорости резания, рассчитанной по формуле

Параметры при расчете режима резания

Основной расчет режимов механообработки ведется на основании трех параметров: скорости резания (V), подачи (S) и глубины резания (t). Для получения практических значений этих параметров, которые можно будет использовать в производстве, на первом этапе определяют их расчетные величины. После чего по ним с помощью эмпирических формул, справочных таблиц и данных из паспортов оборудования выполняют подбор технологических режимов резания, которые будут наилучшим образом соответствовать виду обрабатываемого материала, возможностям станка, а также типу и характеристикам инструмента.

От правильного расчета и выбора данных параметров зависит не только качество обработки, но и такие показатели, как производительность, себестоимость продукции и эксплуатационные расходы. Кроме того, сила воздействия на инструмент в процессе обработки влияет не только на скорость его износа, но и на состояние оснастки и приспособлений. Следствием работы на слишком больших скоростях и подачах является недопустимая вибрация и повышенная нагрузка на узлы и механизмы оборудования. А это может привести не только к потере точности, но и к выходу станка из строя.

Как правило, режимы резания проверяют и корректируют при пробной обработке детали. Поэтому их выбор зависит не только от правильности расчетов, но и от опыта технолога и станочника.

Скорость

В общем виде формула расчетной скорости резания выглядит так:

В указанной формуле значение параметра D зависит от вида обработки. Для токарной обработки это диаметр детали, для прочих видов — диаметр режущего инструмента (сверла, фрезы). Параметр n — это скорость вращения шпинделя в оборотах за минуту. Таким образом происходит определение теоретической величины скорости резания, которая является исходной для последующих вычислений. В частности, она используется для расчета теоретической глубины резания, которая обозначается t. По причине того что реальная скорость резания зависит от множества факторов, ее вычисление осуществляется по эмпирической формуле, в которой единственной расчетной величиной является t:

Здесь Cv — это безразмерная константа, зависящая от различных аспектов обработки; T — нормативное время стойкости инструмента; t — глубина резания; Sо — подача; Кv — сводный коэффициент, являющийся произведением восьми поправочных коэффициентов.

Подача

Подача (обозначается S) — это путь, который проходит режущая кромка за условную единицу. В зависимости от вида механообработки подача может иметь разную размерность. Длина пройденного пути всегда измеряется в миллиметрах, но соотноситься она может либо с одним оборотом (в токарной обработке), либо с одной минутой (при сверлении и фрезеровании). Таким образом, при сверлении — это величина перемещения кончика сверла в глубь поверхности за одну минуту (мм/мин.), а при токарных операциях — продольное или поперечное перемещение резца за один оборот детали (мм/об.). В силу специфики отдельных чистовых операций для них используется такой параметр, как «подача на зуб», которая измеряется в мм/зуб. Ее применяют при работе с инструментом, имеющим несколько лезвий, а ее значение показывает, какой путь кромка (зуб) одного лезвия прошла за один оборот шпинделя. Величину этого параметра также можно вычислить, разделив подачу инструмента за один оборот на количество режущих лезвий.

Поскольку подача напрямую зависит от паспортных параметров конкретного оборудования, ее значение, как правило, не рассчитывают, а выбирают из таблиц в соответствующих технологических справочниках. Производительность металлорежущего оборудования напрямую зависит от величины подачи. Кроме того, она является базовым параметром для расчета основного времени обработки. Теоретически при мехобработке необходимо задавать предельно возможное значение подачи. Но в этом случае вступают в силу ограничения по возможностям станочного оборудования и требования к классу чистоты.

Максимальные значения подачи применяют при обдирке и черновой обработке, а минимальные — при выполнении чистовых операций.

Глубина

Процесс обработки детали режущим инструментом сопровождается возникновением пары сил. С первой силой, которая обозначается R, инструмент воздействует на поверхность детали, а вторая сила возникает в результате встречного сопротивления обрабатываемого материала. Сила R является векторной суммой трех сил: осевой, тангенциальной и радиальной. Их векторы являются проекциями вектора силы R на оси X, Y, Z. На рисунке ниже представлено изображение векторов сил, возникающих при токарном точении.

Кроме константы Ср, степенных показателей подачи, глубины и скорости резания, в формулу расчета силы резания входит корректирующий коэффициент Кр. Он представляет собой произведение пяти поправочных коэффициентов, учитывающих особенности обработки различных материалов.

Для измерения сил резания в режиме реального времени применяют емкостные, индуктивные и тензометрические датчики. Последние являются самыми компактными и наиболее точными. При их использовании на станках с ЧПУ сила резания может адаптивно увеличиваться или уменьшаться путем автоматической корректировки величины подачи и числа оборотов. Это позволяет вести непрерывную обработку без вмешательства оператора, а также предотвращает поломку инструмента и уменьшает его износ.

Фрезерование по диаметру и скорости.

Если у вашего фрезера есть возможность изменять скорость вращения шпинделя, то скорость двигателя выбирается исходя из выбора диаметра фрезы и материала фрезерования. Ниже предложены параметры соотношения количества оборотов электродвигателя к диаметру фрезы:

Диаметр фрезы: Скорость вращения:

До 25 мм 24,000 об / мин
Свыше 25 мм-50 мм 18000 об / мин
Более 50 мм-65 мм 16,000 об / мин
Более 65 мм-75 мм 12000 об / мин
Более 75 мм 10 000 об / мин

Читайте также  Токарно-винторезный станок тв-6

В случае, когда фрезер односкоростной, остерегайтесь использовать в нем фрезы большого диаметра; особенно те фрезы, которые предназначенные только для настольного использования. Их никогда нельзя использовать в ручном фрезере. Фрезерование по материалу также помогает определить скорость вращения фрезы. Например, если вы формируете кромки оргстекла или других материалов из пластмасс, скорость вращения фрезы должна быть замедлена минимально, а на линию среза наносят смазку, можно использовать для смазки при фрезеровании машинное масло.

Встречное и попутное фрезерование

Несмотря на то, что у большинства операторов ЧПУ есть привычка использовать встречное фрезерование, бывают случаи когда попутное предпочтительней . Прежде чем приступить к рассмотрению каждого из них, давайте определим разницу.

Фрезерование попутное – когда направление подачи и движения кромки в точке среза совпадает. Такой способ обеспечивает наилучшую чистоту поверхности. Ниже приведена диаграмма, иллюстрирующая разницу при работе на подаче и против подачи.


Стрелки показывают движение заготовки

Имейте в виду, что на этой иллюстрации движется заготовка, а не шпиндель. На некоторых станках, например на портальном фрезере, шпиндель перемещается, поэтому метки могут меняться.

Попробуйте провести эксперимент на своем станке по резке в обоих направлениях, и вы увидите, что попутное фрезерование дает более гладкую поверхность (это в большинстве случаев. Однако, бывают и ситуации, когда встречное дает лучший результат). Обратите внимание, что в зависимости от того, каким образом вы фрезеруете, вам необходимо убедиться, что деталь не сместится от нагрузок, приложенных в этом направлении.

Характеристики встречного фрезерования:

  • Ширина стружки начинается с нулевой и увеличивается по мере того, как фреза заканчивает нарезку;
  • В процессе резки создаются восходящие силы, которые стремятся поднять заготовку во время фрезерования;
  • При встречном фрезеровании требуется больше энергии, чем при попутном;
  • Качество обрабатываемой поверхности становится хуже, потому что стружка поднимается стружечными канавками и падает перед режущим инструментом. В результате большинство стружки режется повторно. В данной ситуации может помочь подача СОЖ в зону реза;
  • Инструмент изнашивается быстрее, чем при попутном фрезеровании;
  • Встречное предпочтительно для обработки шероховатых поверхностей;
  • Инструмент отклоняется параллельно направлению подачи

Особенности попутного фрезерования:

  • Ширина стружки начинается с максимальной и уменьшается;
  • Стружка падает за режущим инструментом, тем самым уменьшается ее повторный рез;
  • Меньше износ инструмента – срок службы продлевается на 50%;
  • Улучшается качество обработки поверхности из-за меньшего вторичного нарезания;
  • Требуется меньшая мощность;
  • Резание на подаче оказывает нисходящее усилие на деталь, что упрощает требования к ее креплению. Нисходящее усилие также может помочь уменьшить вибрацию при установке станка на тонких полах;
  • Фрезерование на подаче снижает упрочнение детали;
  • Тем не менее, оно может вызывать сколы при фрезеровании горячекатанных материалов из-за закаленного слоя на поверхности.
  • Отклонение инструмента происходит перпендикулярно подаче, поэтому оно может увеличивать или уменьшать ширину разреза и влиять на точность.

Люфт и попутное фрезерование

Существует следующая проблема с попутной фрезеровкой, которая заключается в том, что инструмент может выбирать люфт передачи, если силы резания достаточно велики. Проблема в том, что в процессе резания рабочий стол будет тянуться на счет усилий на фрезе. И если в передаче есть люфт, это приведет к смещению стола с заготовкой на величину люфта. И, если величина люфта будет достаточной, и режущий инструмент работает с достаточной мощностью — это вызовет вибрацию, может привести к поломке инструмента и возможно даже травме оператора из-за летящих осколков. Поэтому многие мастерские запрещают попутную фрезеровку , на всех станках, у которых известен люфт. Некоторые станки оборудуются передачами с выборкой люфта, например ШВП с двойными гайками.

Один из способов рассмотреть этот вопрос – подойти к нему с точки зрения подачи зуб. Это показатель того, сколько материала каждый зуб режущего инструмента пытается срезать. Типичные значения для чистовой обработки составляют от 2-4 сотки на зуб. Для черновой обработки эта величина может увеличиться до нескольких десяток. В худшем случае попутное фрезерование может зацепить станину и рывком переместить деталь на всю величину люфта в тот момент, когда зуб режет деталь. Поэтому к моменту врезания следующего зуба подача увеличится на величину люфта. Предположим, что черновая подача на оборот равна 6 соток и есть люфт 4 сотки. В худшем случае подача на зуб может внезапно увеличиться до 0.1 мм. Это, конечно, еще не конец света, но уже порядочная нагрузка. Теперь предположим, что у вас более старый станок с люфтом 0.3 мм и подача на зуб составляет 8 соток. Если случится выборка люфта, то следующий зуб начнет резать стружку в 0.38 мм вместо 0.08. Это с большой вероятностью означает поломку инструмента.

Нужно учитывать, достаточно ли сила резания для того, чтобы выборки люфта. Многое будет зависеть от сценария точной обработки вашего станка. Если у вас легкий стол на шариковых направляющих с низким трением,, он может легко схватиться инструментом. Если у вас много железа на столе, и, вы работаете с затянутыми регулировочными клиньями, возможность схватывания будет меньше. Есть способы рассчитать силу резания, нов в общем подходе необходимы использовать меньшие концевые фрезы, меньшую глубину резания, более низкие подачи и более низкую скорость вращения шпинделя – все это уменьшает силу резания и вероятность схватывания и выборки люфта.

Кстати, станки с ЧПУ вообще-то не должны иметь заметного люфта, поэтому это больше касается ручных машин.

При определенных условиях попутное фрезерование создает отрицательную геометрию резания.

До этого момента, вы, вероятно, думали, что стоит использовать попутное фрезерование везде где можно. Ведь такой подход создает лучшее качество обрабатываемой поверхности, требует меньше энергии и менее подвержен отклонению режущего инструмента. А операторы, работающие в ручном режиме, говорят что не стоит использовать попутное, потому что это опасно при работе на машине с люфтом. На самом деле, правда где-то посередине. Можно отметить следующие эмпирические правила:

  1. При фрезеровании на глубину в половину диаметра фрезы или меньше лучше использовать попутное (при условии, что у вашей машины низкий люфт, и это безопасно);
  2. При фрезеровании на глубину ¾ диаметра фрезы способ фрезерования не имеет значения;
  3. При фрезеровании на глубину ¾ — 1 диаметра фрезы лучше встречное.

Отклонение инструмента и точность реза при фрезеровании на подаче и против подачи

Каким образом направление фрезерования подачи влияет на отклонение и точность инструмента?

На следующем рисунке показаны небольшие стрелки (называемые векторами), показывают направление отклонение инструмента, когда резец перемещается по траектории инструмента:

Стрелки показывают где режущее усилие пытается отклонить фрезу. Встречный рез вверху, попутное фрезерование внизу

Обратите внимание, что вектор отклоняющей силы более параллелен разрезу при встречном фрезеровании (хотя стрелки длиннее и показывают более высокие силы резания). При фрезеровании на попутной подаче вектор силы практически перпендикулярен разрезу. Если ваша фреза отклоняется на 3 сотки, не является ли более предпочтительным направить его вдоль подачи? Также альтернативой может быть удаление или углубление фрезы в линию реза(изменения съема за проход). Обратно, длины векторов при встречном больше, чем при попутном. Это говорит о том, что силы резания более мощные, и инструмент с большей вероятностью отклонится.

Попробуйте использовать попутное фрезерование для черновой обработки, потому что это даст вам возможность работать быстрее, а эффект от отклонения инструмента существенно не влияет на точность и не имеет значения – последующий финишный проход обеспечит точность. Вы можете грубо работать значительно быстрее, потому что усилие резания меньше и толсто-тонкий профиль стружки переносит тепло на стружку. Стружка уносит тепло, что особенно важно для обработки твердых материалов таких как нержавеющая сталь. Тем самым обеспечивается лучшее качество обрабатываемой поверхности, если вы можете позволить повторный финишный проход.

Встречное фрезерование для финишной обработки

Это противоречит здравому смыслу, по мнению большинства операторов станков. При прочих равных условиях они правы, но есть нюансы.

Проблема в том, что отклонение влияет и на чистоту поверхности. Если вектор сил резания почти параллелен направлению подачи, вы можете считать, что часть вектора, которая толкает его «от параллели» очень мала. Потому инструмент будет иметь небольшую тенденцию отклоняться и наносить «волны».

Обратите внимание, что это может быть особенно важно при работе с тонкими стенками, где они очень тонки!

Поэтому важно перейти на встречное фрезерование для финишной обработки, если вам вообще неприемлемо отклонение. По крайней мере, следует избегать слишком большой глубины реза при попутном фрезеровании, чтобы избежать отклонений. Чтобы свести отклонения к минимуму, следует использовать не более 30% диаметра режущего инструмента для встречного фрезерования и 5% для попутного.

Правильное управление отклонением может помочь вам избежать необходимости дополнительного фрезерования для очистки поверхности.

Встречное фрезерование для микрообработки

По тем же причинам, а особенно если учесть, что отклонение намного хуже влияет на микрофрезерование, стоит выбирать встречный тип вместо попутного для обработки микрофрезами.