Емкость конденсатора: формула

Емкость конденсатора: формула

Емкостный показатель является одной из основных характеристик не только батареек и аккумуляторных элементов, но и конденсаторных устройств. Любому человеку, работающему с электросхемами, необходимо знать, от чего зависит эта величина, может ли она уменьшиться или увеличиться под влиянием внешних факторов (как, например, период времени, зарядка элемента или частота напряжения), и как выглядит выражающая емкость конденсатора формула для разных типов элементов.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
  2. 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
  7. Кодировки — цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Читайте также  Штукатурный пистолет своими руками чертежи

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при °$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда конденсатора q одного из проводников к разности потенциалов между проводниками:

Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ). А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас d – это расстояние между пластинами конденсатора, а q – заряд конденсатора. Подставим эту формулу в выражение для емкости:

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить varepsilon = 1 .

Для запасенной энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

Итак, мы сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики! Так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку. Не пропустите!

Схемы соединения конденсаторов — расчет емкости

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

Фактически последовательное соединение конденсаторов имеет следующий вид:

При данной схеме соединения заряды на конденсаторах будут одинаковы:

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

  • U 1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C 1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:
  • При последовательном соединении трех и более конденсаторов:

Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

При данной схеме напряжение на всех конденсаторах будет одинаково:

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

Пример расчета

Условно разделив схему на группы получим следующее:

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:
  • Группа 2 — последовательное соединение двух конденсаторов:
Читайте также  Мастерская в кладовке

С4,5 = C 4* C 5/ C 4+ C 5 = 20*30/20+30 = 600/50 = 12 мкФ

  • Группа 3 — параллельное соединение трех конденсаторов:

В результате расчета схема упрощается:

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C 1,2,3+ C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

Теперь можно определить общую емкость схемы:

Собщ = C 1,2,3,4,5* C 6,7,8/ C 1,2,3,4,5+ C 6,7,8 = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Применение формул

Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.

Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.

Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.

Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.

Для этого необходимо выполнить следующее:

  1. С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
  2. Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
  3. С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
  4. Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
  5. Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
  6. Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
  7. Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.

А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.

Если есть частота тока и Хс, можно определить емкость по формуле:

Формулы для расчета конденсаторов

Для решения задач техники и прикладных теоретических расчетов нужно знать законы, по которым электрические величины взаимодействуют друг с другом. Эти законы выражаются формулами. Например, напряжение на конденсаторе зависит от его емкости и заряда, накопленного им.

Определение емкости

Это значение зависит от нескольких параметров. Чтобы его рассчитать, нужно знать, в чем измеряется емкость конденсатора. Эта величина эквивалентна тому, сколько кулон заряда накапливается элементом при напряжении в 1 вольт, приложенном к нему. Измеряется она в фарадах. Емкость этих элементов зависит также и от их формы.

  • Плоские конденсаторы — самая простая разновидность накопителей заряда. Как найти емкость конденсатора, имеющего плоскую форму, можно узнать, если определить все параметры, влияющие на это. На его емкость влияет расстояние между его обкладками (токопроводящие пластины) d, площадь самих обкладок S, диэлектрическая проницаемость вещества между обкладками ε и электрическая постоянная ε0, которая равна 8,85 ⋅ 10 -12 фарад на метр. Формула конденсатора такова:

С = ε ⋅ ε0 ⋅ S/d

  • Цилиндрический конденсатор также состоит из двух заряженных обкладок, обе они имеют форму цилиндров, расположенных один внутри другого. Внутренний цилиндр цельный, внешний — полый. Расстояние между обкладками равно разности радиусов этих цилиндров. Формулу емкости конденсатора можно представить такой же, как в предыдущем случае, с той разницей, что площадь обкладок рассчитывается исходя из их высоты и радиуса:

С = 2 ⋅ π ⋅ ε ⋅ ε0 ⋅ h ⋅ R вн /(R нар — R вн) = ε ⋅ ε0 ⋅ S / d

где h — высота обкладки,

Rвн — внутренний радиус, R нар — наружный радиус,

  • Зарядом может обладать не только тело с двумя обкладками, но и проводящий шарообразный объект. Если подать на него напряжение, а потом измерить потенциал между ним и землей, то потенциал будет ненулевым. Формула для расчета шарообразного накопителя заряда:

С = 4 ⋅ π ⋅ ε ⋅ ε0 ⋅ R

где R — радиус шара.

Если в формулу подставить радиус Земли и диэлектрическую проницаемость воздуха, можно получить значение емкости Земли в фарадах. После расчетов:

С (Земли) = 700 микрофарад

Такую емкость могут иметь современные электролитические конденсаторы.

Если разместить один шар внутри другого и подать между ними напряжение, то полученная конструкция тоже будет накапливать заряд между поверхностями шаров. Определение емкости такой конструкции можно провести по формуле:

С = ε ⋅ ε0 ⋅4⋅π ⋅ R1 ⋅ R2 / (R2 — R1)

где R2 и R1 — радиусы соответствующих шарообразных поверхностей.

Емкость конденсатора зависит также и от типа используемого диэлектрика. Наиболее распространены керамические, электролитические, бумажные, воздушные и слюдяные наполнители.

Вычисление энергии

Накопители заряда обладают и другими параметрами. Один из них — это энергия. При зарядке конденсатора на его обкладках накапливается потенциальная энергия.

Она создаёт силу, притягивающую разноименно заряженные пластины, а также ток, который питает электроприборы, если использовать ионистор как источник питания. Энергию можно выразить как зависимость от напряжения обкладок и емкости:

W = C ⋅ U 2 /2

Ток утечки через диэлектрик

Ток утечки появляется в элементе, если есть пути протекания электрического тока с одной обкладки на другую. Чем менее изолирующими свойствами обладает диэлектрик, тем больше будет ток утечки. Особенно это применимо к конденсаторам с диэлектриком в виде промасленной бумаги. Этот параметр зависит и от конструкции элемента, и от загрязненности его корпуса. Если элемент негерметичен, ток утечки может увеличиваться при проникании влаги внутрь корпуса. Этот ток можно рассчитать по закону Ома:

I ут = U/R d

где I ут — ток утечки,

U — напряжение на обкладках,

R d — сопротивление изоляции диэлектрика.

Соединение конденсаторов

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Читайте также  Нижнее подключение радиатора

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.