Триодный тиристор

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:
  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

Читайте также  Бирюзовая ванна

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Вольт-амперная характеристика тиристора

ВАХ тиристора (с управляющими электродами или без них) приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.
  • В точке 1 происходит включение тиристора.
  • Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.
  • Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).
  • В точке 2 через прибор протекает минимальный удерживающий токIh.
  • Участок между 0 и 4 описывает режим обратного запирания прибора.
  • Участок между 4 и 5 — режим обратного пробоя.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Классификация

По способу управления

Различают:

  • диодные тиристоры (динисторы). Их открывание происходит за счет подачи импульса высокого напряжения между анодом и катодом.
  • триодные тиристоры (тринисторы). Их открывают подачей управляющего тока на управляющий электрод.

Триодные тиристоры бывают:

  • с управлением по катоду — напряжение, формирующее управляющий ток, подается между управляющим электродом и катодом.
  • с управлением по аноду — напряжение, формирующее управляющий ток, подается между управляющим электродом и анодом.

Запирание может осуществляться путем:

  • снижения тока анод — катод ниже тока удержания (применимо для динисторов, запираемых и незапираемых тринисторов)
  • подачи запирающего напряжения на управляющий электрод (применимо для запираемых тринисторов)

По обратной проводимости

По обратному напряжению тиристоры подразделяются на:

  • Проводящие в обратном направлении (обратно-проводящие) — имеют небольшое (несколько вольт) обратное напряжение
  • Непроводящие в обратном направлении (обратно-непроводящие) — имеют обратное напряжение, соизмеримое с максимальным прямым напряжением в закрытом состоянии
  • С ненормированным обратным напряжением — производитель не публикует и не гарантирует какое-либо значение этого параметра. Такие тиристоры могут использоваться только в схемах, где подача обратного напряжения исключена.
  • Симметричные (симисторы) — прибор коммутирует токи, проходящие в обоих направлениях.

Применяя симисторы, следует помнить, что они работают симметрично только на первый взгляд. Большинство распространенных симисторов хорошо открываются, когда на управляющий электрод подано положительное напряжение относительно катода, а на анод напряжение любой полярности, а также когда на управляющий электрод подано отрицательное напряжение относительно катода, и на анод напряжение отрицательной полярности. Но когда на анод подано отрицательное напряжение, а на управляющий электрод положительное, то они не открываются или даже выходят из строя. Проектируя симисторную схему, нужно свериться с документацией конкретного симистора, понять, какие управляющие сигналы являются допустимыми (приведенные выше ограничения являются типичными, но у отдельных типов симисторов могут быть другие ограничения) и убедиться в том, что в схеме будет подаваться правильные сигналы.

По быстродействию

Определяющими здесь является время включения (отпирания) и время выключения (запирания).

По мощности

При работе в ключевом режиме максимальная мощность переключаемой нагрузки определяется напряжением на тиристоре в открытом состоянии при максимальном токе и максимальной рассеиваемой мощностью. Действующее значение тока через нагрузку не должно превышать максимальную рассеиваемую мощность, деленную на напряжение в открытом состоянии.

При работе в других режимах следует ориентироваться на максимальную рассеиваемую мощность тиристора.

Общие принципы тиристорного управления

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.
Читайте также  Застекленная веранда к дому

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Сфера применения

Принцип работы и компактные размеры симисторов позволяют применять их практически повсеместно. В самом начале своего появления триаки использовались при проектировании мощных трансформаторов и зарядных устройств. Сегодня же, с развитием производства небольших полупроводников, симметричные тиристоры стали значительно компактнее, что позволяет использовать их в самых различных установках и сферах.

В промышленности мощные приборы используются для управления станками, насосами и другим электрооборудованием, где требуется плавное изменение проходящего тока. В быту применение симисторов еще более обширно:

  • Это практически весь электроинструмент: от ручной дрели и шуруповерта до зарядного устройства для автомобильных аккумуляторов;
  • Многие бытовые электроприборы: пылесосы, фены, вентиляторы и так далее;
  • В бытовых компрессорных установках (кондиционеры и холодильники);
  • Электронагревательные устройства: камины, духовки, СВЧ печи.

Повсеместное применение триаков послужило толчком для разработки диммеров – популярного сегодня устройства для плавного регулирования освещения. Принцип работы механического диммера основан на использовании симистора.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Триодные тиристоры

Триодные тиристоры имеют три вывода, два из которых являются анодом и катодом, а третий – управлением pn-переходом. Если в динисторе управление поступлением тока происходит автоматически (pn-переход открывается под воздействием определённого напряжения), то движение тока от анода к катоду в тиристоре начинается только после подачи управляющего сигнала на третий контакт.

В зависимости от возможности проводить ток в том или ином направлении различают:

  • тиристоры, проводящие электроток в одном направлении,
  • тиристоры, проводящие электроток в двух направлениях.

К последним относится так называемый симистор – симметричный тиристор. Принцип работы симистора основывается на возможности проводить ток в двух направлениях, что позволяет использовать эти устройства в сетях переменного тока. В симисторах также имеется управляющий электрод, но отсутствуют анод и катод, поскольку в разные моменты времени ими являются оба вывода.

Закрытие pn-перехода тиристора может осуществляться двумя путями: либо проходящий через устройство ток снижается до отметки ниже минимального удерживающего тока (для незапираемых тиристоров), либо на управляющий вывод подаётся сигнал, полярность которого противоположна полярности сигнала, которым тиристор был открыт (для запираемых устройств). Если на отрытый тиристор вновь подать открывающий сигнал, закрытие pn-перехода не произойдёт.

Тринистор

Тринистор (триодный тиристор) , как и динистор, представляет собой монокристалл с четырехслойной p-n структурой, только вдобавок к аноду и катоду добавлен вывод управляющего электрода, который присоединен к внутренней области типа р.

Рассмотрим как будет меняться вольт-амперная характеристика тринистора в зависимости от величины тока управляющего электрода Iу .
Если на управляющий электрод не подавать напряжение и ток Iу =0 , идентична характеристики динистора и он будем работать также как диодный тиристор, т.е. включается только при достижении напряжении Uлав .
Как только на управляющий электрод подадим положительное напряжение (относительно катода) и через него пройдет ток Iу1>0 , тогда напряжение, при котором тринистор откроется, понизится.
При дальнейшем увеличении тока управления вольт-амперная характеристика спрямляется до тех пор, пока, при определенном токе Iу2 , не станет подобна прямой ветви характеристики диода. Этот ток называется током спрямления .
Управляющий электрод играет роль «поджигающего» устройства (как стартер в люминесцентной лампе) и после отпирания тринистора он не может уже управлять им.
Чтобы тринистор выключить ток через него нужно уменьшить до значения, меньшего, чем ток удержания Iуд .

Это можно достигнуть несколькими методами.
Эти методы показаны на рисунке в виде разных вариантов выключения и включения кнопок.
Первый способ отключения — замыкание анода и катода для снижения Uак до нуля (Кн.1 ). Ток, соответственно, тоже падает меньше тока удержания тринистора и он отключается.
Для второго способа включаем последовательно с нагрузкой Rн дополнительный резистор Rдоп , сопротивление которого выбирается так, чтобы выполнялось условие:

Iуд>Iпр=Uи/Rн+Rдоп

т.е. прямой ток с дополнительным резистором должен быть меньше тока удержания. Когда кнопка Кн.2 замкнута она шунтирует Rдоп и тринистор открыт. При разомкнутой кнопке к нагрузке подключается дополнительное сопротивление — ток уменьшается ниже тока удержания и прибор отключается.
Третий способ самый простой — выключаем питание Uи кнопкой Кн.3 . Просто и надежно.
Есть еще один способ отключения — подключение на анод отрицательного напряжения на время, необходимое для отключения тринистора. Это происходит в тиристорных схемах при питании их переменным током.

Управление тиристорами мощностью переменного тока

Одним из способом управления тринистором (диодным тиристором, или просто — тиристором) мощностью переменного тока является подача на управляющий электрод сигнал такой же частоты как и коммутируемый переменный ток. Но при этом нужно выполнять следующие условия:
во-первых, отпирающие сигналы должны подаваться только тогда, когда подаваемое напряжение на аноде будет положительное относительно катода;
во-вторых, напряжение управления тоже всегда должно быть положительным.

На рис.а показана простейшая схема получения управляющего сигнала на тиристоре при помощи переменного резистора. Напряжение анодного питания, проходя через цепочку резисторов R1 и R2 , выпрямляется диодом VD1 и подается на управляющий электрод.
Резистор R1 понижает анодное напряжение до определенного значения для открытия тиристора VS1 , а потенциометр R2 служит для установки нужного тока для открытия тиристора ( Iу.от ). Когда на аноде будет положительная полуволна переменного напряжения — тогда и на управляющем электроде тоже будет положительное напряжение относительно катода.

Рассмотрим на рис.b как управляется тиристор переменным током.
При подаче на управляющий электрод синусоидального сигнала через некоторое время значение его достигнет тока открытия тиристора ( Iот. ) и через него потечет ток нагрузки. Величина задержки импульса запуска называется углом запуска ( φ ).
Переменный синусоидальный ток подходя к нулю становится меньше тока удержания ( Iуд. ), а затем вообще меняет полярность. Тиристор в этот момент отключается до следующего изменения полярности питающего напряжения.
Таким образом видно, что путем изменения величины угла запуска φ во время положительного полупериода напряжения, ток через тиристор и нагрузку будет протекать в течении уже какой-то определенной части полупериода. Если φ мал, то тиристор откроется в начале полупериода, при бОльших задержках — в любой точке полупериода. В реальных устройствах значение угла запуска регулируется от 5 до 170 градусов, поэтому в только таком интервале можно изменять средний ток в нагрузке тиристора.
Такой способ управления током тиристора называется фазовым регулированием (или фазовым управлением) .

Читайте также  Время нагрева воды формула

Так-же можно регулировать часть положительного полупериода путем изменения сдвига фазы синусоидального сигнала на управляющем электроде относительно фазы напряжения на аноде тиристора ( рис.C ).
Синусоидальный сигнал с фазовым сдвигом на управляющем электроде дойдя до Iот запускает тиристор и дальше происходит процесс такой-же как при запуске без фазового сдвига. Разница между запуском без фазового сдвига и с сдвигом в том, что в первом случае величина угла запуска φ регулируется величиной напряжения сигнала на управлении, а во втором случае — регулируется только сдвигом фаз.
Но все эти амплитудно-фазoвые способы управления обладают невысокой стабильностью момента включения тиристора, т.к. минимальный ток управления Iу.от. сильно зависит от колебания температуры, да и тиристоры с одинаковым номиналом имеют разброс параметра минимального тока открытия Iу.от.

Более лучшую стабильность имеет фазоимпульсный способ запуска, при котором тиристор включается импульсами с постоянной амплитудой и током выше тока открытия Iу.от , с задержкой относительно начала положительного полупериода на аноде ( рис.d) .
На рисунке показаны импульсы управления y1 и y2 с малой длительностью (до нескольких микросекунд), которые синхронизированы с положительными полупериодами подающего напряжения на анод. Угол φз — угол запуска, а φп — угол проводимости.

Для создания управляющих импульсов применяют генераторы с разными комбинациями элементов для формирования импульсов и регулировки их длительности.
Управление тиристорами мощностью переменного тока применяют как в промышленности так и в радиолюбительской практике. Это: регуляторы мощности для паяльника, регуляторы скорости вращения двигателя, цветомузыкальные приставки и т.д и т.п.