Таблица данных по теплопроводности утеплителей

Таблица данных по теплопроводности утеплителей

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя = толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпича Коэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³) 0,56 0,70 0,53
Силикатный, белый 0,70 0,85 0,44
Керамический пустотелый (плотность 1400 кг/м³) 0,41 0,49 0,76
Керамический пустотелый (плотность 1000 кг/м³) 0,31 0,35 1,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

Материал Толщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус 100 0,71
Брус 150 1,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича 380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) 380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) 380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича 510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) 510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) 510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³) 200 1,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³) 200 0,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³) 200 0,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС 50 1,25
Ветрозащитные плиты Изоплат 25 0,45
Теплозащитные плиты Изоплат 12 0,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

XPS и EPS

Результаты измерений образцов XPS и EPS (рис. 3, 4) показали, что значения теплопроводности на воздухе и в азоте в начале первой серии совпадали и только после нагрева до 330К (57C) в первой серии снизились на 2 и 2,5% соответственно. Далее последовала стабилизация, причем температурная зависимость теплопроводности имеет относительно гладкий характер.

Большой размах диапазона значений, а также вогнутость графика температурной зависимости говорят о наличии в порах легких газов с высокой теплопроводностью, замерзающих при температурах фазового перехода паров воды в лед.

Что примечательно, температурная зависимость теплопроводности EPS пересекает зависимости XPS (рисунок 2). При -80 о С она ниже, при размораживании газов – выше).

Рисунок 3. Теплопроводность XPS в диапазоне температур -190/+80С.

Рисунок 4. Теплопроводность EPS в диапазоне температур -190/+80С.

Минеральная вата

При измерении образцов минеральной ваты значения теплопроводности открытопористого материала в отличие от закрытопористых на воздухе и в азоте практически совпадали (рис. 5) даже после нагрева до 360К (87С) в первой азотной серии.

Причем температурная зависимость теплопроводности носит относительно гладкий характер, а некоторый разброс объясняется непрочностью и неоднородностью ваты. Большой размах диапазона значений теплопроводности, а также выпуклость температурной зависимости говорят о наличии в порах ваты одного газа — азота. Все остальные газы сорбировались в азот сразу после погружения.

Рисунок 5. Теплопроводность минеральной ваты в диапазоне температур -190/+80С.

Утеплитель PIR

Результаты измерений образцов PIR-изоляции показали, что температурная зависимость теплопроводности носит негладкий характер и имеет два минимума или точки перегиба при -33 и -13С (рис. 6).

Это говорит о наличии в порах материала не менее двух газов (пентан и СО2), которые конденсируются ниже этих температур, тем самым повышая теплопроводность за счет увеличения доли легких молекул в газовой фазе. Однако рост показателя незначителен и больше напоминает стабилизацию значения теплопроводности при понижении температуры.

Рисунок 6. Теплопроводность PIR-изоляции при в диапазоне температур -78/+42С.

Представленные материалы становятся более эффективными в зоне критических отрицательных температур (менее -15С): снижение коэффициента теплопроводности принимает характер стремительного падения.

Столь резкое снижение теплопроводности объясняется очень малым пятном контакта жидкой фазы тяжелых газов, образовавшейся в порах, с твердым веществом стенок. За счет этого изменяются доли легких молекул в газовой фазе и образуется вакуум, замещающий газовую фазу вспенивающего агента, но эти факторы не участвуют в передаче тепла. Как оказалось, вакуум надежно выполняет компенсаторную функцию.

Какие данные нужны для расчета толщины утеплителя?

Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.

Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.

Вывод

Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.

На фото – наглядная таблица

То же самое, но в виде диаграммы

Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Минеральная вата или пенопласт

Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

При выборе утеплителя нужно изучить характеристики каждого варианта

Теплосопротивление материалов

Кладка из красного кирпича, толщина стены 0,25 м. (в один кирпич) 0,36
Кладка из красного кирпича, толщина стены 0,38 м. (полтора кирпича) 0,53
Кладка из силикатного кирпича, толщина стены 0,25 м. (в один кирпич) 0,30
Кладка из силикатного кирпича, толщина стены 0,38 м. (полтора кирпича) 0,44
Кладка из газо-пеноблоков, толщина стены 0,2 м. 0,69
Кладка из газо-пеноблоков, толщина стены 0,3 м. 0,81
Брус деревянный, 100 мм. 0,71
Брус деревянный, 150 мм. 1,07
Металл 0,5 – 1,0 мм. (ангары, павильоны, строит. вагончики, крыши домов) 0,1

Из таблицы следует, что в соответствии с требованиями СНиП толщина стен жилого дома должна быть:

Исполнение данных условий в современной действительности абсолютно нереально. Вот почему использование утеплителей сегодня – вынужденная необходимость. Чем ниже коэффициент теплопроводности утеплителя, тем меньше его слой.

Выводы

Итак, мы обсудили, что теплопроводность утеплителей — это их способность передавать тепловую энергию. Теплоизолятор должен не выпустить тепло сгенерированное отопительной системой дома. Первостепенной задачей любого материала является удержать внутри себя воздух. Именно газ имеет наименьшую теплопроводность. Нужно также рассчитать теплосопротивление стены, чтобы узнать правильный коэффициент теплоизоляции здания. Если у вас остались вопросы по этой теме, оставляйте их, пожалуйста, в комментариях.